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ABSTRACT 

I s o m o r p h i c  e m b e d d i n g s  of  l~' in to  l~ a re  s t u d i e d ,  a n d  for  d ( n , k ) =  

infIH TH [IT ']lz T varies over all isomorphic embeddings of 11 ...... "~ into 12} we 
have that lim,_~d(n,k)=3"(k)', k > l ,  where 3'(k) is the solution of 
(1 + y)ln(1 + 3,)+ (1 - y)ln(l - 3') = k t  In4. 

O. Introduction 

The  purpose  of this pape r  is to s tudy i somorphic  embedd ings  of I?  into 1~". 

Since l~,, 1 < p N 2, can be 2- isomorphical ly  e m b e d d e d  into l~ "."l for  some  up > 1 

(cf. [5], [6]) we then au tomat ica l ly  get results for embedd ings  of l~' into IL 

Combin ing  the result  of Section 1, in which we consider  r andom embedd ings  

of  l'~ into l : ,  with an es t imate ,  given in T h e o r e m  2.1, of  d(n, k)  = inf{I I TI! II T- ' I t ;  

T varies over  all i somorphic  embedd ings  of II k'''g2"l into l~}* f rom below, we 

obtain  that  l i m , _ ~ d ( n , k ) = 7 ( k ) - ' ,  k > l  ( d ( n , k ) ~ l  if k=< l ) ,  y ( k ) i s  the 

solution of 

(o.1) (1 + ' / ) I n ( 1  + y ) +  (1 - y ) l n ( 1 -  y ) =  k ' l n 4  

(where In = loge) and satisfies 

(0.2) k ,,2< 7 ( k ) <  (ln4)'/2k -',2, ~irn "),(k)2k = ln4.  

Consequen t ly  we get for  every  K > 1 good es t imates  of the largest d imens ion  

of a subspace  V of 12 which are K - i s o m o r p h i c  to /~im v. As a compar i son ,  

es t imates  this precise do not seem to be known for  embedd ings  of l.;" into I;, 

1 =< p N ~ studied for  example  in [2], [3], [5], [7], [81 and a recent  p a p e r  of V. D. 

Milman.  

All proofs  are carr ied out  with the assumpt ion  of real scalars. See however  the 

r e m a r k  fol lowing Coro l la ry  2.2. 

* Here [x] denotes the integer part of the real number x. 
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1. R a n d o m  matrices  

Let (ei)7=l and (~)7=~ be the natural unit vector basis in 17 and l=" respectively. 

Every real matrix (t,j)~'a~.j=, defines a linear mapping T.: l~'--> 12 by T.e, = 

Xj"-_~ tlj/,, i = 1,2 . . . .  , m, and 

(*) I[T:'[[ - ' =  inf t[Tnb[[~= inf max I~'. b&].  
IIblh=l Hb[h=l I~j'<rt ]~ifl I 

We estimate this from below for a class of random matrices. 

TrtEOREM 1.1. Let 0</3=<1,  k > l  and y ' < y ( k )  be given. Put m ( n ) =  

[k log2 n], n = 2 , 3 , . . . .  Assume that (t~)?_-t~']'_-',, n = 2,3 . . . . .  is a sequence o[real 

matrices, the entries of which are independent, symmetric random variables with 

/3 =< t t~l =< 1. Then there exists no = no(~3, k, "y') such that for n >= no 

P ( inf max ~ > /3y '  _-> 1 - e x p ( -  n "+'°g~'"''+'~k'a)~)/=) 
\ Ilbllt =1 l~ j~n  

where 

s( t )  = ((1 + t)"*°(1 - t)"-°) -~a, 

Note that 1 + logs s((T' + T(k))/2) k > 0 since 

O ~ t ~ l .  [] 

2 - ' =  s (T (k  )) k < s ( (g '+  T(k  ))12) k. 

Especially, since 

max bit~ <-- bl = b 1, 
I<=j~n .= 

we conclude, in view of (*), from the theorem that given k > 1 we can, for n 

large enough, find a subspace U C 12 of dimension re(n)  for which d'(U, l? ~"~) is 

arbitrarily close to T(k)- ' .  Here d'  is the Banach-Mazur distance (for isomor- 

phic spaces U and V, d'(U, V) = inf{ H Tl l ,  r ' t t ;  T varies over all isomorphisms 

of U onto V}). 

To prove Theorem 1.1 we need two lemmas, the first of which is a standard 

lemma on 8-nets of the unit sphere of a finite dimensional Banach space (cf. [5]). 

LEmMA 1.2. Let X be a Banach space of dimension m. Suppose ~ > 0 is given. 

Then the unit sphere S (X )  has a 6-net of cardinality <- (1 + 2/8)=. [] 

We will also need 

LEMMA 1.3. Let (Xi)7'=~ be a sequence of real identically distributed random 



Vol. 55, 1986 EMBEDDINGS 155 

variables. Assume that there are constants p and A such that 

Then 

P(IX~l>=;t)>-_plm, i = 1 , 2  . . . . .  m. [ ]  

PROOF. 

= mP(IXjl=> x) 

PROOF OF THEOREM 1.1. 

variables each taking the values 

(23, '+ y(k) ) /3 .  Then  

m ~(m ' I ~"1 >'0)--> (i,1+ ~,,,m,21) = " 
By Stirling's formula  

/ \ m 
~[(1 + To)m/2 l) 2-"  - m-"2((1 + y,))"+"))(1 - 'yo)(l=Y")) -rn/2. 

Hence  there  is m~(k, y') such that 

Let  8 = ~ ( y ( k ) -  y ') /3.  By L e m m a  1.2 we can choose  a 6-net  N of cardinal i ty 

_-< (3/8)  m'"' on the unit sphere  of  l ?  '~. We have 

> > X ~ > ~  

for  every  j = 1,2 . . . . .  m. • 

Le t  (ei)~,  be a sequence  of independen t  r andom 

+ 1  and - 1  with probabil i ty  ½. Put  y o =  

PCi°fmaxl ' I t I 'bt' ) -<- "<-- \ O ~ N  

( IVY' I ) (1.2) _-> 1 - ~ P max b,t~. < OY,, 
b'~"N \ I=<i~,, .= 

= 1 -  1 -  P bit,] >-- Oyo • 
b ~ N  j = l  

For  simplicity, let us write t~ in place of  t~, for  any j and n fixed. Then ,  since 

= ~ . k -  bdk l, we get 
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P I =, >-~3`o = P bit, = [33`o 

(I " ---->" S=~l' ( ~_"' i bktk i ) 

= r e ( n )  Now make the assumption that all b, > 0 and put d, = b, It, I/(Y,k=l I b~t~ I). Define 
~r~, 1 <= i <= re(n), by zr~ ( ] )=  (i + j  - 1)mod(m(n)) ,  1 <-_j <= m(n) .  Then define a 
sequence of (dependent)  identically distributed random variables by 

r e ( n )  

X~ = ~ d~,(j~sign(tj), 1 <-_ i <= re(n). 
j - I  

Then,  since b~ _---0 we get 

By (1.1) we have 

re(n) m(n) 

Z X, = Z sign(t,). 
i=1  i=1  

(1.3) 

P m ( n )  -1 = X~ ~ 3`,, = P m(n) - '  ~,  sign(t~) _-> 3`, 
i=1  

=> s((3`'+ 3`(k))/2) "'"), m ( n )  >- m,(k,  3`'). 

Hence an application of Lemma 1.3 yields 

(1.4) 

'~=~ (~--"z [bkt~l)b~[t~] sign(t,)l >_3`o)=P([Xnl>_3`. ) 

>-_ m ( n  )-'s((3`' + y ( k  ))/2) ~'"). 

Thus, returning to (1.2), we get that 

P " -->fiT,, >=m(n)-ls((3`'+3`(k))/2) m("', m(n)>=m,(k ,  3` ') 

holds if b~ >-_ O, 1 <= i <= re(n). By symmetry,  this holds for all b E N. Substituting 
(1.4) into (1.2) we hence get that 

P inf max b,t,"i == ¢3'0 --> 1 - (3/6)"~"~(1- m(n)- ' s ( (3` '+ 3`(k))/2)"(')" 
b ~ N  | ~ j ~ n  

_-> 1 - (3/6)m'"~exp(- s ( ( y '+  y(k) ) /2) ' t "~n/m(n))  

_-__ 1 - (3/6)'~"~exp( - m(n)-~n tl+~°g2s"~'+*~kwz)~)) 

=> 1 - exp( - n °÷'°*2s~'+~c~w2~)/:) 
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if n is large enough  depend ing  on/3,  k and 7 ' .  Since this holds for  the 6-ne t  N 

where  6 =/3 (7 ( k ) -  y')/3, the p roof  is comple ted .  • 

COROCLARV 1.4. L e t k > t  b e g i v e n a n d p u t m ( n ) = [ k l o g 2 n ] , n = 2 , 3  . . . . .  
1 r e ( n )  et Assume that T.: t, ~ l~, n = 2,3 . . . . .  are represented by random matrices 

(t~)7=~J"=,, each of which satisfies the hypotheses of Theorem 1.1 with/3 = 1. Then 

l imsup  I ILII  IIT~lll ---- 7 ( k ) - '  a.s. [ ]  
n ~ g  

PROOF. Let  k > 1. Choose  an increasing sequence  (At)7=~ with l i m ~ &  = 

r (k ) .  Then 

& = 1 + log_, s((h, + 7(k) ) /2 )  k > 0. 

T h e o r e m  1.1 gives 

P(IIT, HIIT~'II>A;')= P(  inf max  " < A ,  
. = 2  = \ Itblh =1 I~j<n i = l  

N P inf max b~t~"j < At 
n = 2  \ llbth = I l~J<-n i=1  

+ ' ~  e " ~ < ~  for  each 1 = 1 , 2  . . . . .  
n = n o +  l 

By the Bore l -Can te l l i  l emma,  the probabi l i ty  that  11T, [[ H T~' [f > A i 1 for  infinitely 

m a n y  n is zero.  H e n c e  

P(limsuPllT.[[llT?,'H>,~?)---O ~ for  each 1 = 1,2 . . . . .  

We  conclude that  

P (l ira sup [I To II I[ TX' II < r ( k ) - ' )  = 1. 
\ / 

2. Est imates  of d(n, k) f rom below 

Most  embedd ings  of 1~ "~"~ into l"~ by means  of matr ices  with entr ies  -+ 1, as in 

Sect ion 1. are close to being best  possible.  We have 

THEOREM 2.1. Letk > l ande <(1-y (k ) ) /2beg iven .  Se tm(n)=[k log~n] ,  
n = 2, 3 . . . . .  Then for n so large that 

(2.1) 2m(n)n ~ m n) < 2 ~ . ~ / 2  
i = 0  
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holds, we have 

COROLLARY 2.2. 

d(n, k ) >= ( 1 - 2 e  +2~re(n))-'. 

Let k > 1. Then 

I-7 

lim d(n, k ) =  y(k)- ' .  [] 

PROOF. This follows immediately from Theorem 2.1 and Corollary 1.4. • 

REMARK. In the case of complex scalars one obtains, by separating real and 

imaginary parts, that (2y(k))  -I =< lirn.~® d(n, k) =< lira._® d(n, k) =< 2y (k )  -z. 

PROOF OF THEOREM 2.1. Let k > 1 and e < (1 - y(k))/2. For T: l~'(n)---~ l~ 

represented by a matrix (aej) such that Tee = ETa, aejfj, i = 1,2 . . . . .  re(n), we have 

IITII = sup T I ~ beee = m a x l a , , , [ .  
Ublhffil 

Thus 

d(n, k) = inf{ll TII; T varies over all embeddings of l? 'n) into l :  with II T-'II = 1} 

/ IVY,' I } (2.2) = inf  max l a , j l ;  inf max b,a,j = 1 
I. ij IlbSl=! 1"~i~. .ffi 

max,a,,; I } ~ i n f  inf max ~ ~eaej = r e ( n )  
a i = - - - I  I ~ j ~ .  

o 

To estimate this, let (a~j) be any matrix that satisfies 

(2.3) inf max 8ca, = re(n). 
,~i ffi ± ! I < / ~ n  . =  

We now want to show the existence of signs (8~)7'2~), such that the terms in the 

sum in (2.3), to a large extent, cancel, thereby forcing max~j ] a~ I to be large. To 

accomplish this, we decompose (aej) into a sum of matrices as follows. Let d~, 

q~ejC 11, l = 1,2 . . . . .  2re(n),  be such that 

(i) dl_->O and ' -  ~e j -  ± 1, 

(ii) a e j = E ~  ") ' t djq~0 and 

(iii) max,=<,~..(.)[ a~ [ - ,~m(.) ,~, - -  ~ - ~ l f f i l  U . j .  

It is not difficult to see that there exists such a choice of numbers. 
{ - 1 ,  1} m(") becomes a metric space M when equipped with the metric 

re(n) 

dist(~b, 0 ) = 2 - '  ~ffi~ I* , -Oel ,  $ , O E { - 1 , 1 }  "("). 
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Note that each qJ ~ M defines an isometry / , :  M--~ M by 

(L(0)) ,  = ~o, ,  1 <= i <-_ re(n), 0 ~ M. 

For each ~ E M ,  let V, (d / )={OEM;  dist(O,O)<-em(n)} be the em(n)- 
neighbourhood of ~. 

i _ ,  ~,,.(.~ _-<j=n, 1 < l  < 2 r e ( n )  belong to M and The sequences ~oj-t~o~d~=, , 1 < = = 
I,.Ji.t V~ (q~) covers at most 

l,-(.,, ( (in)) points in M " 2m(n)n ~, m 
i = O  

Suppose n is so large that (2.1) holds. Then there exists ~ o ~  M such that 

_ q/,, q/tff I,.J,.i v~ (q~). Since I,o is an isometry on M we get that 

(2.4) ¢l~m(n) ~ - , , = , ,  ( -  1)?Jr ~ ff U v .  (I,,,(~o~)). 
j,I 

Estimating the left side in (2.3) we now get that 

m(n)= inf max 6ia,~ 

_-<max d~ ~ ~iq~,, 
lNj~--n .= 

=< max d~ ~,q~0 
l = ~ j N n  i = 1  

2 r a ( n )  

=,~.max ~ d~(m(n)-2[em(n)]) 

(by (2.4)) 

i I /  / x  ~ r  / x l x  
max max la,ir(mtn)-ztern(n)] ) 
l~ j~_n l<=i~_m(n) 

which implies that 

max I a,j I = > m(n)(m(n)  - 2[em(n)])-' >= (1 - 2e + 2/m(n)) -I. 
1,1 

Hence, by (2.2), we get that 

d(n, k ) >= ( 1 - 2 e  +2~re(n)) -1. 

In order to consider isomorphic embeddings of l~' into 12, 1 =< p =< 2, we will 
need 

PROPOSITION 2.3. There exists a constant C > 0 such that i[ E C 12 is a 
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subspace with dim E = v, then 

d'(E, I~) >->_ C(v/ ln n) 1/2. [] 

For a proof we refer to [4]. A consequence of Proposition 2.3 is that there 

exists a constant Co > 0 such that for all n 

(2.5) d(n, k) >= Cok J/2 

To prove (2.5) we proceed as follows. Let 1 <-p <2 .  Since l~ ~" embeds 

2-isomorphically into Ip for some ap > 0 (cf. [5]), we can for any positive integer 
l ap in (n )  

n find S." ,z ~lT'"'withllS°tl l lS~'l l<=2. Suppose T,: 17,""'--~ I: is injective. 

Proposition 2.3 applied with 

E = T. o S. (l~ "'~1"~) 

gives that 

2 II T, II II T: '  II----II 7".° S, II II(T. o So)-'ll--> C(,~o [k log_, n ]/ln n)'/2 

which implies that II To tf II T~ ~ [[ --> Cpk'/2, for some constant Cp > 0 depending only 

on p. Thus (2.5) holds. The preceding argument also proves the latter part of the 

next result. 

PROPOSITION 2.4. Let 1 <= p <--_ 2. Then there exist positive constants Kp and Cp 

such that if k > 1 and re(n) = [k log2 n], n = 2, 3 . . . . .  then 

(i) ]:or n large enough depending on k, there exist isomorphic embeddings 
i ra (n)  i n  

7".: t p ~ t~ with II T, II II T2'II-<- gpk "2, 
(ii) ]:or any linear and injective mapping 7",: l~'"'---~ l"~ we have II To II II TX' II->- 

Cpk ,/2 [] 

PROOF. It remains to prove (i) for l < p - - 2 .  Since l~ '~") embeds 2- 

isomorphically into l~ ~"~") for some o tp>l  (cf. [5], [6]), we can find 

S,: tp ~ l, ~'~"' with IIS, tl II S: '  II =< 2. Applying Theorem 1.1 with fl = 1 and 

7' = k-~/= we get, for n large enough depending on k, a mapping T." t~ --~ 

with II T. II II T2' II < (ak)  '~-. Hence 7".° S.: l~'~")---~ l~" satisfies 

,~ 1 1 2 t 1 1 2 <  II T, o S, II II ( T, o S, ) I lI <= z ,  ~ ~ = Kpk ~'2. II 

The results in Sections 1 and 2 show that, for n large enough, most matrices 

with entries +_ 1 represent good embeddings of l~ '~"~ into 12. A related result 

holds for embeddings of l? ~"~ into l~". 

PROPOSITION 2.5. Let 0 < p < 1 and k > 1 be given. Then there exist c > 1 and 

no@ N, where c only depends on p, such that the following holds. Let re (n)= 
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[k log2 n] ,  n = 2 ,3 , . . . ,  a n d  a s s u m e  tha t  i v-t.~tc,-t.~l a n d  i ,  xtc,,t.~,, > ~SijJi=l,j=l ~ij)i=l,j=l , n = no, are 

r a n d o m  matr ices  wi th  i n d e p e n d e n t  entries each  t a k i n g  the va lues  + 1 a n d  - 1 

with probabi l i ty  ½. Then,  i[ S ,  : l '~"~-~ l~ '"~"~1 a n d  T,  : l~''~"~l---~ l~ denote  the 

corresponding  l inear mapp ings ,  we  h a v e  for  T,  o S,  : l~'t"~---~ lg that  

P(II T ,o  S, IJ II(To o So)- '  II--< 16c Z/Zk'/2) > P. [ ]  

PROOF. F r o m  the p roo f  of T h e o r e m  1 in [8] it fol lows that ,  given 0 < p < 1, 

there  exists  c > 1 such tha t  for  a p r o p o r t i o n  la rger  than  ( l + p ) / 2  of all 

r e ( n )  x [ c m ( n ) ]  mat r i ces  with ent r ies  ___ 1, we have  for  the  c o r r e s p o n d i n g  l inear  

m a p p i n g  S, : l~""'---~ l~ "r''"'l tha t  Ii s. II II s : '  II--< 16. A n  app l i ca t ion  of T h e o r e m  1.1 

now finishes the  proof .  • 

ACKNOWLEDGEMENT 

The  au tho r  is gra teful  to Per  Enf lo  for  his e n c o u r a g e m e n t  and  suppor t .  

REFERENCES 

1. G. Bennett, V. Goodman and C. M. Newman, Norms of random matrices, Pacific J. Math. 59 
(1975), 359--365. 

2. G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On uncom- 
plemented subspaces of Lp, 1 < p < 2, Israel J. Math. 26 (1977), 178-187. 

3. S. Dilworth and S. Szarek, The cotype constant and an almost Euclidean decomposition for 
finite dimensional normed spaces, to appear. 

4. T. Figiel and W. B. Johnson, Large subspaces of l~ and estimates of the Gordon-Lewis 
constant, Israel J. Math. 37 (1980), 92-112. 

5. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of 
convex bodies, Acta Math. 139 (1977), 53-94. 

6. W. B. Johnson and G. Schechtmann, Embedding l'~ into IT, Acta Math. 149 (1982), 71-85. 
7. B. S. Kashin, Diameter of some finite dimensional sets and of some classes of smooth functions, 

Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 334--351 (Russian). 
8. G. Schechtmann, Random embeddings of Euclidean spaces in sequence spaces, Israel J. Math. 

40 (1981), 187-192. 


