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ABSTRACT

Isomorphic embeddings of [I' into /I are studied, and for d(n k)=
inf{| T|| | T7']: T varies over all isomorphic embeddings of I!"* " into 1} we
have that lim._..d(n k)= y(k)", k>1, where y(k) is the solution of
I+ y)n(+ )+ (- y)n(l —y) =k 'In4.

0. Introduction

The purpose of this paper is to study isomorphic embeddings of IT" into /5.
Since I, 1 < p =2, can be 2-isomorphically embedded into !!*"! for some a, > 1
(cf. [5]. [6]) we then automatically get results for embeddings of /] into [..

Combining the result of Section 1, in which we consider random embeddings
of I7into 1%, with an estimate, given in Theorem 2.1, of d{(n, k) =inf{|| T} | T7'||;
T varies over all isomorphic embeddings of I!*"*") into I2}' from below, we
obtain that lim,_,d(n k)= v(k)", k>1 (d(n,k)=1if k=1). y(k) is the
solution of

0.1) 1+y)Inl+y)+(1=-y)n(t—=y)=k 'Ind

(where In = log. ) and satisfies
0.2) k"< y(k)<(In4)”k"?, lim v(kYk =In4.

Consequently we get for every K > 1 good estimates of the largest dimension
of a subspace V of [, which are K-isomorphic to [y
estimates this precise do not seem to be known for embeddings of 3" into [},
1 = p ==, studied for example in [2], [3], [5], [7], [8] and a recent paper of V. D.

Milman.

. As a comparison,

All proofs are carried out with the assumption of real scalars. See however the
remark following Corollary 2.2.

" Here [x] denotes the integer part of the real number x.
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1. Random matrices

Let (&)=, and (f;);-: be the natural unit vector basis in ;" and /7 respectively.
Every real matrix (#;)~7,-; defines a linear mapping T,: 77— I: by T.e; =
2iatifi,i=1,2,...,m and

*) 1721 = jpf, I Tb k= jpt,

We estimate this from below for a class of random matrices.

THEOREM 1.1. Let 0<B =1, k>1 and y' <vy(k) be given. Put m(n)=
[klog:n], n=2,3,.... Assume that (t})75}2,, n =2,3,..., is a sequence of real
matrices, the entries of which are independent, symmetric random variables with
B =|1;1 = 1. Then there exists no= no(B, k, v') such that for n = n,

P| inf max
leli=1 15j%n

m(n)

'Zl b,»t.f}} > B'Y') =1— exp( - n(1+losgs((7'+v(k))/2)")l2)

where
s(=((@+)"A -0y 0=t=1. O
Note that 1+ log, s((y' + y(k))/2)* > 0 since
27 = s(y(k)) <s((y'+ y(k))2)-

Especially, since

max
1=sj=n

m(n)
=S 1a1=101,

th

we conclude, in view of (*), from the theorem that given k >1 we can, for n
large enough, find a subspace U C [ of dimension m(n) for which d'(U, IT™) is
arbitrarily close to y(k)™'. Here d' is the Banach-Mazur distance (for isomor-
phic spaces U and V, d'(U, V) = inf{| T|||| T™'||; T varies over all isomorphisms
of U onto V}).

To prove Theorem 1.1 we need two lemmas, the first of which is a standard
lemma on 8-nets of the unit sphere of a finite dimensional Banach space (cf. [5]).

LEMMA 1.2. Let X be a Banach space of dimension m. Suppose 8 > 0 is given.
Then the unit sphere S(X) has a 8-net of cardinality = (1+2/8)™. O

We will also need

LEMMA 1.3. Let (X))v, be a sequence of real identically distributed random
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variables. Assume that there are constants p and A such that

P(m" g&*%)&)ép

Then
P(|XilzM)zp/m, i=12,...,m. O
PROOF.
péP(m ;x‘g)‘)gp(‘mgglmg)\)g; P(X:|z=A)
=mP(|X;|=ZA) foreveryj=1,2,...,m. |

Proor oF THEOREM 1.1. Let (&), be a sequence of independent random
variables each taking the values +1 and —1 with probability 3. Put y,=
(2y'+ y(k))/3. Then

p(m

By Stirling’s formula

2

> )z ([(1 + ;:)m/Z]) 2

(l(l + ;:l)m/Z]) 277 = (4 )= )T

Hence there is m,(k, y') such that

an  P(m|Salzw)zs@ rvdnn mEmky)

Let 6 = B8(y(k)— v')/3. By Lemma 1.2 we can choose a §-net N of cardinality
=(3/8)™" on the unit sphere of I7". We have

m{n) m(n
P ( m:t: max 2 bt = B'y(.) =1-P (gg)fv max ; ,,‘ < Byo)
m(n)
(1.2) =1- P(m_a bty < 3%)
BEN t=isn | 3

il = B‘y(,)) .

For simplicity, let us write 4 in place of ¢ for any j and n fixed. Then, since
B =30 | btk |, we get
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con)r
=zP(|> o ~sign(f) | = v\ -
(RIys )

Now make the assumption that all b, =0 and put d; = b, | £, |/(Sv7 | bet |). Define
m, 1=i=m(n), by m(j)=(i +j — 1)mod(m(n)), ] =j = m(n). Then define a
sequence of (dependent) identically distributed random variables by

m(n)

2 bt}>Byn)
m(n}) b,’ ti

min)
P <| ; bit;

m{n)

Xi= Y dupsign(t),  1=i=m(n).
=

Then, since b; =0 we get
m(n) m{n)
z X = 2 sign(t).
i=1 i=1
By (1.1) we have

m{n)

2 sign(¥ )l yo

'E)Xi = yo> = P(m(n)“

zs((y'+y(k)2)"", m(n)z mi(k,¥).

P (m(n)“l
(13)

Hence an application of Lemma 1.3 yields

P( 2’ bt

(104
Thus, returning to (1.2), we get that

g

holds if b, =20, 1 =i = m(n). By symmetry, this holds for all b € N. Substituting
(1.4) into (1.2) we hence get that

sign(t)

>y(,)—P(’X.]- Yo)

(1.4) = m(n)"s((y' + y(k))/2)".

m(n)

2, b ‘ 2 By ) = m(n) s+ yUND™, m(n)Z m(k, y)

i=

m(n)

> bt

i=1

2 Byo) 2 1= (18" (L= m(n) (' + Y(K))2)"Y

= 1-(3/8)"Wexp(—s((y'+ y(k))/2)"n/m(n))

=1- (3/6)'"<")exp( m(n) 1 (1+iog, s((v" +y(k))/z)k))

(1+logys((y” +v(k))/2)")/2)

P ( inf max

bEN I=jsn

zl-exp(—n
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if n is large enough depending on B, k and y'. Since this holds for the §-net N
where 8 = B(y(k)— v')/3, the proof is completed. N

CorOLLARY 1.4. Letk >1 be given and put m(n)=[klog.n], n =2,3,....
Assume that T,: 17— 12, n=23,..., are represented by random matrices
(E)7E012, each of which satisfies the hypotheses of Theorem 1.1 with B = 1. Then

limsup | T, || T.']| = y(k)" as. d

Proor. Let k> 1. Choose an increasing sequence (A;);=; with lim;_. A, =
y(k). Then

& =1+log. s((A + y(k))/2)" >0.

Theorem 1.1 gives

m(n)

>, b}

i

ZP(HT.]H 1T 1> A7) EP(Hbilnf max

= h=11=j=n

<)

min}
> b,-t,-",-l < /\,)

Tty

= P( inf max
Jolli=11=j=n

n=2

3

+ > e"' <o foreach I=12,....

n=ng+1i

By the Borel-Cantelli lemma, the probability that || T, || || 7.'[| > A" for infinitely
many n 1s zero. Hence

P(limsup||T,,[|||T;'||>)\,">=O for each [=1.2, ... .
We conclude that

p(umsup T T;'lléy(k)"')=l. n

2. Estimates of d(n, k) from below

(n}
l;n n

Most embeddings of into 1% by means of matrices with entries +1, as in

Section 1, are close to being best possible. We have

THEOREM 2.1. Letk >1ande <(1— vy(k))/2 be given. Set m(n)= [k log, n],
n=2,3,.... Then for n so large that

[em(n}]

2.1) 2m(n)n ('"5"))<2M‘"’/2

=0
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holds, we have
dimk)=(1-2¢+2/m(n))". O

COROLLARY 2.2, Let k>1. Then
lim d(n, k)= y(k)™". A
Proor. This follows immediately from Theorem 2.1 and Corollary 1.4. |

ReMARK. In the case of complex scalars one obtains, by separating real and
imaginary parts, that (2y(k))™"' = lim._.. d(n, k)= lim,..d(n, k)= 2y(k)".

PrOOF OF THEOREM 2.1. Let k>1 and & <(1— y(k))/2. For T: I .
represented by a matrix (a;) such that Te; = 2]_, a;f;, i = 1,2,..., m(n), we have

(3 ).

I T|= sup
lBle=1

= max lai].
Thus
d(n, k)= inf{|} T||; T varies over all embeddings of /7 into I2 with || T~'f| = 1}

m(n)
2.2) 1nf{max |ai|; |‘}“nf] max Z ba,| = }
m(n)

=m(n)}.

= inf {maxla,,l, inf max
&=21 ISjSn

; d.a;

To estimate this, let (a;) be any matrix that satisfies

m(n)

Z sia;| =

We now want to show the existence of signs (8;);~7’, such that the terms in the
sum in (2.3), to a large extent, cancel, thereby forcing max;; | a; | to be large. To
accomplish this, we decompose (a;) into a sum of matrices as follows. Let d;,
¢;CR, I=1,2,...,2m(n), be such that

(i) d;=0 and q>f,— +1,

(i) a; =27 djpj; and

(iii) MaXizigmem| @z | = 27" d].

It is not difficult to see that there exists such a choice of numbers.

{—=1,1}"" becomes a metric space M when equipped with the metric

(2.3) inf max

si=%1 1Sjsn m(n)

m(n)

dist(y, 9) = 2" le. 6|, ¢, 0e{-1,1}"".
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Note that each ¢ € M defines an isometry I,: M — M by
(L (8)): = ¥i6,, l=sism(n), 6EM

For each ¢y €M, let V. ($)={8 € M; dist(¢,8)=em(n)} be the em(n)-
neighbourhood of ¢.

The sequences ¢;= ()i, 1=j=n, 1=1=2m(n) belong to M and
U, V. (¢)) covers at most

fem()}
2m(n)n D (mgn)) points in M.
=0

Suppose n is so large that (2.1) holds. Then there exists ¢° € M such that
—¢°, ° & U, V. (). Since I is an isometry on M we get that

(2.4) (DR, (- & U Ve (L))

Estimating the left side in (2.3) we now get that

m(n)

E da;

m(n)= mf max

1=j=n

2m(n) min)
=max | > d; 3 '11‘3<P5,»}
2m(n) , m(n)
Smax % 4|3 vl by @.4)
2m(n) .
=max 3 dj(m(n)=2[em(n)))
=max max [a;|(m(n)=2[em(n)])
which implies that
max la;|Z m(n)(m(n)—=2[em(n)])"' = (1 -2¢ +2/m(n))"".
Hence, by (2.2), we get that
dn,k)=z(1-2¢+2/m(n))". [ |

In order to consider isomorphic embeddings of I} into [Z, 1=p =2, we will
need

ProrosiTION 2.3.  There exists a constant C >0 such that if ECIL is a
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subspace with dim E = v, then
d'(E, 15z C(v/Inn)"”. O

For a proof we refer to [4]. A consequence of Proposition 2.3 is that there
exists a constant C,>0 such that for all n

(2.5) d(n, k)= Cok'”.

To prove (2.5) we proceed as follows. Let 1=p <2. Since [-" embeds
2-isomorphically into I} for some @, >0 (cf. [5]), we can for any positive integer
nfind S,: 137" — 17" with | S, | | S'[| = 2. Suppose T,: 17— I% is injective.
Proposition 2.3 applied with

a m(n)

E=T,o8.(," )

gives that
2| TN T =N To o Su (T, 2 S,) ' (12 Clap [k loga n)/in )™

which implies that || T, | || T.'|| = G,k ', for some constant C, >0 depending only
on p. Thus (2.5) holds. The preceding argument also proves the latter part of the
next result.

ProposITION 2.4. Let 1 = p =2. Then there exist positive constants K, and C,
such that if k >1 and m(n)=1lklog.n), n=2,3,..., then

(i) for n large enough depending on k, there exist isomorphic embeddings
T.: 17— 12 with | T ||| T.'[| = Kk,

(ii) for any linear and injective mapping T,: 17— 12 we have | T, ||| T.'[| =
Ck'”. |

ProoOF. It remains to prove (i) for 1<p=2. Since [} embeds 2-
isomorphically into 17" for some a,>1 (cf. [5], [6]), we can find

S 10 S 1™ with ||S. IS |=2. Applying Theorem 1.1 with B =1 and

v' = k™" we get, for n large enough depending on k, a mapping T,,: l;xpmm__) "
N T.°S.] (T, 0 8) M| =2a k' = K k. -

The results in Sections 1 and 2 show that, for n large enough, most matrices
with entries =1 represent good embeddings of [7"™ into IZ. A related result
holds for embeddings of [T into [Z.

ProrosITION 2.5. Let 0< p <1 andk > 1 be given. Then there existc > 1 and
no €N, where ¢ only depends on p, such that the following holds. Let m(n)=
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[klog:n], n =2,3,..., and assume that (s;)7*7 <7 and (6;) 52", n Z no, are
random matrices with independent entries each taking the values +1 and -1
with probability ;. Then, if S, :17™— "™ gnd T, : 1" 12 denote the

corresponding linear mappings, we have for T, S, : 1™ — I that
P(I T, S, (T, = S, | = 162k ") > p. 0

PrOOF. From the proof of Theorem 1 in [8] it follows that, given 0 < p <1,
there exists ¢ >1 such that for a proportion larger than (1+p)/2 of all
m(n) X [cm(n)] matrices with entries * 1, we have for the corresponding linear

mapping S, : [7— I¥"™ that || S, | | S-']| = 16. An application of Theorem 1.1
now finishes the proof. |
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